# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Yun-Feng Chen,\* Mei Xu and An-Xin Wu

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: chyfch@gmail.com

#### Key indicators

Single-crystal X-ray study T = 292 KMean  $\sigma(\text{C-C}) = 0.007 \text{ Å}$ Disorder in main residue R factor = 0.059 wR factor = 0.148 Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Diethyl 5,10-dihydro-6-iodo-4,11-dioxo-cis-1H,3H,4H,11H-2-oxa-3a,4a,10a,11a-tetraazabenz[f]indeno[2,1,7-ija]azulene-11b,11cdicarboxylate

The title compound,  $C_{20}H_{21}IN_4O_7$ , is a glycoluril derivative which contains five fused rings. An iodobenzene ring is fused to a seven-membered ring linked to two of the N atoms from the separate rings of the glycoluril system, and the other two N atoms are linked to an O atom by two of the methylene groups. The structure of the compound possesses normal geometrical parameters. The crystal packing is consolidated by intermolecular hydrogen bonds, resulting in a two-dimensional network.

### Comment

Since Freeman *et al.* (1981) first established and named the structure of cucurbit[n]uril (CB[n], n = 6), which is a remarkable macrocyclic compound comprising six glycoluril rings and 12 methylene bridges, many glycoluril derivatives have been synthesized. Witt *et al.* (2000) have comprehensively synthesized many methylene-bridged glycoluril dimers from organic-soluble diethoxycarbonyl glycoluril derivatives and discuss many methods for the synthesis of glycoluril derivatives. In the present paper, we report the crystal structure of the title compound, (I) (Fig. 1), a useful intermediate for glycoluril derivatives of a more complex nature.



Selected bond lengths and angles are listed in Table 1. In the crystal structure, analysis using *PLATON* (Spek, 2003) shows that no obvious  $C-H\cdots\pi$  and  $\pi-\pi$  interactions are observed. However, pairs of molecules are associated by intermolecular complementary hydrogen bonds; at the same time, each molecule also forms hydrogen bonds with another molecule (Table 2), resulting in a two-dimensional network (Fig. 2).

# **Experimental**

Compound (I) was synthesized according to the procedure reported by Wu *et al.* (2002). Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a dichloromethane and hexane  $(v/v \ 1:2)$  solution at 283 K.

© 2006 International Union of Crystallography All rights reserved Received 11 April 2006

Accepted 1 May 2006

#### Crystal data

 $\begin{array}{l} C_{20}H_{21}IN_4O_7\\ M_r=556.31\\ Orthorhombic, Pbca\\ a=15.533 (ô) Å\\ b=11.414 (5) Å\\ c=24.006 (10) Å\\ V=4256 (3) Å^3 \end{array}$ 

#### Data collection

Bruker APEX CCD area-detector diffractometer  $\varphi$  and  $\omega$  scans Absorption correction: none 46045 measured reflections

#### Refinement

Refinement on  $F^2$ H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.068$  $w = 1/[\sigma^2(F_o^2) + (0.075P)^2]$  $wR(F^2) = 0.148$ where  $P = (F_o^2 + 2F_c^2)/3$ S = 0.94 $(\Delta/\sigma)_{max} = 0.001$ 4856 reflections $\Delta\rho_{max} = 1.11$  e Å<sup>-3</sup>301 parameters $\Delta\rho_{min} = -0.92$  e Å<sup>-3</sup>

## Table 1

Selected geometric parameters (Å, °).

| C1-I1      | 2.099 (5) | C9-N1      | 1.389 (5) |
|------------|-----------|------------|-----------|
| C6-C7      | 1.534 (6) | C19-O7     | 1.427 (6) |
| C7-N1      | 1.449 (5) | C19-N3     | 1.440 (6) |
| C9-O1      | 1.196 (5) |            |           |
| C6-C1-I1   | 122.3 (3) | O7-C19-N3  | 111.0 (3) |
| C5-C6-C7   | 118.8 (4) | C9-N3-C19  | 121.1 (4) |
| N1-C7-C6   | 114.9 (3) | C19-N3-C15 | 116.3 (4) |
| N2-C11-N1  | 113.5 (3) | C20-O7-C19 | 110.6 (4) |
| N2-C11-C12 | 108.5 (3) |            |           |

Z = 8

 $D_x = 1.736 \text{ Mg m}^{-3}$ 

Mo  $K\alpha$  radiation

 $\mu = 1.56 \text{ mm}^{-1}$ 

T = 292 (2) K

 $R_{\rm int} = 0.134$ 

 $\theta_{\rm max} = 27.5^\circ$ 

Block, colorless

 $0.10 \times 0.05 \times 0.02 \text{ mm}$ 

4856 independent reflections

2978 reflections with  $I > 2\sigma(I)$ 

### Table 2

Hydrogen-bond geometry (Å, °).

| $\overline{D-\mathrm{H}\cdots A}$ | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------|------|--------------|--------------|---------------------------|
| $C19-H19B\cdots O2^{i}$           | 0.97 | 2.49         | 3.251 (6)    | 135                       |
| $C13-H13A\cdots O4^{ii}$          | 0.97 | 2.53         | 3.302 (6)    | 136                       |
| $C8-H8B\cdots O2^{ii}$            | 0.97 | 2.35         | 3.246 (5)    | 153                       |
| $C7-H7A\cdots O2^{ii}$            | 0.97 | 2.47         | 3.353 (5)    | 152                       |

Symmetry codes: (i) -x, -y + 2, -z + 2; (ii)  $-x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ , z.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C— H distances of 0.96 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$ . All other H atoms were placed in geometrically idealized positions, with C—H distances in the range 0.93–0.97 Å, and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2U_{eq}(C)$ . Atom O5 is disordered over two sites; the site-occupancy factors for the two orientations were refined, giving 0.78 (2) and 0.22 (2) for the major and minor components, respectively. The high  $R_{int}$  was the result of the poor quality of the crystal; attempts to obtain a larger crystal were unsuccessful.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics:



#### Figure 1

A view of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.



#### Figure 2

Plot of the crystal packing forming a two-dimensional network in the *ab* plane. Hydrogen bonds are shown as dashed lines.

*PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors acknowledge the Central China Normal University for financial support.

## References

- Bruker (2001). *SMART* (Version 5.628) and *SAINT-Plus* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367–7368.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Witt, D., Lagona, J., Damkaci, F., Fettinger, J. C. & Isaacs, L. (2000). Org. Lett. 2, 755–758.
- Wu, A., Chakraborty, A., Witt, D., Lagona, J., Damkaci, F., Ofori, M. A., Chiles, J. K., Fettinger, J. C. & Isaacs, L. (2002). J. Org. Chem. 67, 5817–5830.